翻訳と辞書
Words near each other
・ Convallaria
・ Convallarin
・ Convallatoxin
・ ConvaTec
・ Convectant drying
・ Convection
・ Convection cell
・ Convection heater
・ Convection microwave
・ Convection oven
・ Convection zone
・ Convection–diffusion equation
・ Convective available potential energy
・ Convective Boundary Layer
・ Convective condensation level
Convective heat transfer
・ Convective inhibition
・ Convective instability
・ Convective mixing
・ Convective momentum transport
・ Convective overshoot
・ Convective overturn
・ Convective storm detection
・ Convective temperature
・ Convector
・ Convenanter Church
・ Convencion de Juegos de Mesa y Comics
・ Convención
・ Convene
・ Convenience


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Convective heat transfer : ウィキペディア英語版
Convective heat transfer

Convective heat transfer, often referred to simply as convection, is the transfer of heat from one place to another by the movement of fluids. Convection is usually the dominant form of heat transfer in liquids and gases. Although often discussed as a distinct method of heat transfer, convective heat transfer involves the combined processes of conduction (heat diffusion) and advection (heat transfer by bulk fluid flow).
The term convection can sometimes refer to transfer of heat with any fluid movement, but advection is the more precise term for the transfer due only to bulk fluid flow. The process of transfer of heat from a solid to a fluid, or the reverse, is not only transfer of heat by bulk motion of the fluid, but diffusion and conduction of heat through the still boundary layer next to the solid. Thus, this process without a moving fluid requires both diffusion and advection of heat, a process that is usually referred to as convection. Convection that occurs in the earth's mantle causes tectonic plates to move.
Convection can be "forced" by movement of a fluid by means other than buoyancy forces (for example, a water pump in an automobile engine). Thermal expansion of fluids may also force convection. In other cases, natural buoyancy forces alone are entirely responsible for fluid motion when the fluid is heated, and this process is called "natural convection". An example is the draft in a chimney or around any fire. In natural convection, an increase in temperature produces a reduction in density, which in turn causes fluid motion due to pressures and forces when fluids of different densities are affected by gravity (or any g-force). For example, when water is heated on a stove, hot water from the bottom of the pan rises, displacing the colder denser liquid, which falls. After heating has stopped, mixing and conduction from this natural convection eventually result in a nearly homogeneous density, and even temperature. Without the presence of gravity (or conditions that cause a g-force of any type), natural convection does not occur, and only forced-convection modes operate.
The convection heat transfer mode comprises one mechanism. In addition to energy transfer due to specific molecular motion (diffusion), energy is transferred by bulk, or macroscopic, motion of the fluid. This motion is associated with the fact that, at any instant, large numbers of molecules are moving collectively or as aggregates. Such motion, in the presence of a temperature gradient, contributes to heat transfer. Because the molecules in aggregate retain their random motion, the total heat transfer is then due to the superposition of energy transport by random motion of the molecules and by the bulk motion of the fluid. It is customary to use the term convection when referring to this cumulative transport and the term advection when referring to the transport due to bulk fluid motion.〔Incropera DeWitt VBergham Lavine 2007, ''Introduction to Heat Transfer'', 5th ed., pg. 6 ISBN 978-0-471-45727-5〕
==Overview==

Convection is the transfer of thermal energy from one place to another by the movement of fluids. Although often discussed as a distinct method of heat transfer, convection describes the combined effects of conduction and fluid flow or mass exchange.
Two types of convective heat transfer may be distinguished:
* Free or natural convection: when fluid motion is caused by buoyancy forces that result from the density variations due to variations of thermal temperature in the fluid. In the absence of an external source, when the fluid is in contact with a hot surface, its molecules separate and scatter, causing the fluid to be less dense. As a consequence, the fluid is displaced while the cooler fluid gets denser and the fluid sinks. Thus, the hotter volume transfers heat towards the cooler volume of that fluid.〔http://biocab.org/Heat_Transfer.html Biology Cabinet organization, April 2006, “Heat Transfer”, Accessed 20/04/09〕 Familiar examples are the upward flow of air due to a fire or hot object and the circulation of water in a pot that is heated from below.
* Forced convection: when a fluid is forced to flow over the surface by an external source such as fans, by stirring, and pumps, creating an artificially induced convection current.〔http://www.engineersedge.com/heat_transfer/convection.htm Engineers Edge, 2009, “Convection Heat Transfer”,Accessed 20/04/09〕
Internal and external flow can also classify convection. Internal flow occurs when a fluid is enclosed by a solid boundary such when flowing through a pipe. An external flow occurs when a fluid extends indefinitely without encountering a solid surface. Both of these types of convection, either natural or forced, can be internal or external because they are independent of each other. The bulk temperature, or the average fluid temperature, is a convenient reference point for evaluating properties related to convective heat transfer, particularly in applications related to flow in pipes and ducts.
For a visual experience of natural convection, a glass filled with hot water and some red food dye may be placed inside a fish tank with cold, clear water. The convection currents of the red liquid may be seen to rise and fall in different regions, then eventually settle, illustrating the process as heat gradients are dissipated.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Convective heat transfer」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.